The role of NOS2 and NOS3 in renal protein and arginine metabolism during early endotoxemia in mice.

نویسندگان

  • Yvette C Luiking
  • Marcella M Hallemeesch
  • Wouter H Lamers
  • Nicolaas E P Deutz
چکیده

Previously, we observed an enhanced renal protein synthesis and increased de novo arginine production in the early response to endotoxemia in wild-type Swiss mice (Hallemeesch MM, Soeters PB, and Deutz NE. Am J Physiol Renal Physiol 282: F316-F323, 2002). To establish whether these changes are regulated by nitric oxide (NO) synthesized by NO synthase isoforms NOS2 and NOS3, we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2(-/-)), and NOS3-deficient (NOS3(-/-)) mice under baseline (unstimulated) and LPS-treated conditions. The metabolism of renal protein, amino acid, and arginine was studied at the whole body level and across the kidney by infusing the stable isotopes l-[phenyl-(2)H(5)]phenylalanine, l-[phenyl-(2)H(2)]tyrosine, l-guanidino-[(15)N(2)]arginine, and l-[ureido-(13)C,(2)H(2)]citrulline. Renal blood flow was measured using radioactive PAH extraction. Under baseline conditions, renal blood flow was significantly reduced in NOS2(-/-) mice (0.29 +/- 0.01 vs. 0.48 +/- 0.07 ml.10 g body wt(-1).min(-1) in WT) (P < 0.05), and de novo arginine production was lower in NOS2(-/-) mice. After LPS challenge, renal protein turnover and arginine production increased in all three groups (P < 0.05), even though renal de novo arginine synthesis did not increase. The expected increase in renal citrulline production and disposal after LPS was not observed in NOS2(-/-) mice (P = 0.06). Collectively, these data show that NOS2 is constitutively expressed in the kidney and remarkably functional as it affects renal blood flow and de novo arginine production under baseline conditions and is important for the increase in renal citrulline turnover during endotoxemia. NOS3, in contrast, appears less important for renal metabolism. The increase in renal protein turnover during endotoxemia does not depend on NOS2 or NOS3 activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NOS3 is involved in the increased protein and arginine metabolic response in muscle during early endotoxemia in mice.

Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino acid and protein kinetics are regulated by NO synthesized by nitric oxide synthase-2 or -3 (NOS2 or...

متن کامل

NOS2 deficiency increases intestinal metabolism both in nonstimulated and endotoxemic mice.

Animal studies have suggested that nitric oxide (NO) synthases (NOS) play a role in the regulation of protein metabolism in endotoxemia. We therefore investigated the role of inducible NOS (NOS2) on intestinal protein and neuronal NOS (NOS1) and endothelial NOS (NOS3) on amino acid metabolism. Three groups of mice were studied: 1) wild-type (WT), 2) NOS2 knockout (NOS2-KO), and 3) NOS2-KO + N(o...

متن کامل

Arginase-1 Deficiency Regulates Arginine Concentrations and NOS2-Mediated NO Production during Endotoxemia

RATIONALE AND OBJECTIVE Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1(fl/fl)/Tie2-Cre(tg/-) mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resti...

متن کامل

Renal arginine and protein synthesis are increased during early endotoxemia in mice.

The kidney has an important function in arginine metabolism, because the kidney is the main endogenous source for de novo arginine production from circulating citrulline. In conditions such as sepsis, nitric oxide (NO) production is increased and is dependent on extracellular arginine availability. To elucidate the adaptive role of renal de novo arginine synthesis in a condition of increased NO...

متن کامل

Citrulline a More Suitable Substrate than Arginine to Restore NO Production and the Microcirculation during Endotoxemia

BACKGROUND Impaired microcirculation during endotoxemia correlates with a disturbed arginine-nitric oxide (NO) metabolism and is associated with deteriorating organ function. Improving the organ perfusion in endotoxemia, as often seen in patients with severe infection or systemic inflammatory response syndrome (SIRS) is, therefore, an important therapeutic target. We hypothesized that supplemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 288 4  شماره 

صفحات  -

تاریخ انتشار 2005